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1 Introduction

Coding theory arose in the middle of the previous century as an engineering discipline,
but its development leads to more and more distinguished mathematical techniques.

An error-correcting code is a system of error control for data transmission, whereby
the sender adds redundant data to its messages. This allows the receiver to detect and
correct errors (within some bound) without the need to ask the sender for additional
data. The advantage of error-correcting code is that a back-channel is not required,
or that retransmission of data can often be avoided, at the cost of higher bandwidth
requirements on average. Such codes are therefore applied in situations where retrans-
missions are relatively costly or impossible.

We deal mostly with self-dual doubly-even codes of length 24m (so called extremal
codes). Such codes are of great interest by two reasons. Firstly, they possess remarkable
inner geometry, namely all codewords of �xed weight form a 5-design. Secondly, as it
is shown in the �rst chapter, such codes have the biggest minimal distance possible for
a given length, i.e. more errors can be detected and corrected at a time.

In this thesis the problem of existence of larger extremal codes is investigated. The
goal of the paper is to explore connection between the extremal and Quadratic Residue
codes and to provide some tools to research putative self-dual codes.

In the �rst chapter we introduce the de�nitions, important for the whole thesis, i.e.
a linear code, Hamming weight, weight spectrum of the code. We explain the concepts
of self-dual and doubly-even codes and describe the general properties of such codes.
The notion of extremality arise naturally in the end of the chapter.

The second chapter is crucial for understanding the work done. Here the we intro-
duce the important concepts of cyclic codes and automorphism group, give the detailed
description of Quadratic Residue codes. Further we give the two known examples of
extremal codes. For both codes we �nd the full weight spectrum is found and examine
thoroughly the automorphism group. It is very important for estimating the results
adduced in subsequent chapters.

In the third chapter gives one can �nd a short review on the results concerning two
�rst putative extremal codes. A lot of articles where studied to write down state-of-
the-art. Here the possibilities for the order of automorphism group are concerned.

The main results of the thesis are collected in the fourth chapter. They concern
the primes occurring in the order of the automorphism group of the code. Theorem
27 gives a general tool to explore putative self-dual codes. Theorem 34 establishes the
connection between extremal and Quadratic Residue codes. This result's importance
can be easily noticed if one concerns chapter 2. Theorem 34 describes the di�erence
between the known and putative extremal codes.

In the �nal chapter we closely examine the low-weight vectors in Quadratic Residue
codes. The algorithm of Karlin and MacWilliams is introduced and proved here. Here
we show that larger Quadratic Residue codes are most likely not to be extremal. In
other words Theorem 34 is backed with practical results.
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� 1. Duality in Coding

An [n, k] linear code C over the binary �eld F2 is a k -dimensional subspace of Fn2 .
The Hamming weight wt of a vector a in Fn2 is de�ned by the number of its nonzero
coordinates:

wt(a) = |{i| ai 6= 0}| .
We call C an [n, k, d] code if d is the minimum among the weights of nonzero

codewords in C . If u = (u1, . . . , un) ; v = (v1, . . . , vn) are the vectors with components
in F2 , then their scalar product will be

〈u, v〉 = u1v1 + ...+ unvn. (1)

(All calculations are made in F2 .)
If 〈u, v〉 = 0 , then the vectors u and v are called orthogonal. Since the characteristic

of the �eld F2 is even it occur that 〈a, a〉 = 0 even if a 6= 0 .

De�nition 1 The dual (or orthogonal) code C⊥ is de�ned as the set of all vectors
orthogonal to all codewords of C, i.e.

C⊥ = {u ∈ C | 〈u, v〉 = 0 ∀v ∈ C}. (2)

So, if C has the generator matrix G and the check matrix H then C⊥ has the
generator matrix H and the check matrix G . Thus C⊥ is a [n, n − k]-code. C⊥ is a
subspace, orthogonal to C .

If C = C⊥ than C is called self-dual. Thus the code C is self-dual if 〈u, v〉 = 0 for
each pair (not necessarily di�erent) of codewords in C and has dimension k = n/2 (n
must be an even number).

Let Ai be the number of codewords of weight i in the code C .

Ai = |{c | c ∈ C, wt(c) = i}| , (i = 0, ..., n),

The set of all Ai for i = 0, . . . , n is called a weight spectrum of the code.
Let us call

WC(x, y) =
n∑

i=0

Aix
n−iyi =

∑
u∈C

xn−wt(u)ywt(u). (3)

the weight function. This polynomial generates the weight specter of the code. Here
x and y are variables, and WC(x, y) is the homogenous polynomial in x and y of the
degree n . The property of homogenity of WC(x, y) is often useful. We can always
eliminate x , putting x = 1 and nevertheless having the suitable weight function

WC(1, y) = WC(y) =
n∑

i=0

Aiy
i. (4)

In the same way let A
′
i be the number of the codewords of length i in the code C⊥ .

The weight function of the code C⊥ is then equal:

WC⊥(x, y) =
n∑

i=0

A
′

ix
n−iyi =

∑
u∈C⊥

xn−wt(u)ywt(u). (5)
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The main result concerning dual codes is the fact that the polynomial WC⊥(x, y)
can be de�ned through linear transformation of the polynomial WC(x, y) .

Theorem 1 (MacWilliams theorem for binary linear codes) Let C be a linear
binary [n, k]-code, and C⊥ its dual code. Then

WC⊥(x, y) =
1

|C|
WC(x+ y, x− y), (6)

where |C| = 2k is the number of the codewords in the code C.

Proof. For a proof see [17, Chapter 5, Section 2]. 2

In addition, the following identities, equivalent to (6) hold:

n∑
j=0

A
′

ix
n−jyi =

1

|C|

n∑
i=0

Ai(x+ y)n−i(x− y)i (7)

or ∑
u∈C⊥

xn−wt(u)ywt(u) =
1

|C|
∑
u∈C

(x+ y)n−wt(u)(x− y)wt(u). (8)

The above equations are often called MacWilliams identities.

� 2. Self-dual doubly-even codes

Assume now that C is a binary self-dual code such that the weights of all codewords
are multiples of 4 (self-dual doubly-even code) and let W (x, y) be its weight function.
Since C is self-dual, Theorem 1 yields

W (x, y) =
1

2n/2
W (x+ y, x− y) = W (

x+ y√
2
,
x− y√

2
) (9)

(because W (x, y) is a homogenous polynomial of the degree n). Since the weights of
all codewords are multiples of 4, W (x, y) contains only powers of y4 . Hence

W (x, y) = W (x, iy), (10)

where i =
√
−1 .

The following theorem of Gleason helps to �nd all polynomials W (x, y) for which
the equations (9) and (10) hold.

Theorem 2 (Gleason [11]) Each polynomial for which (9) and (10) holds true is a
polynomial in

W1(x, y) = x8 + 14x4y4 + y8

and
W2(x, y) = x24 + 759x16y8 + 2576x12y12 + 759x8y16 + y24,
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Corollary 3 Instead of W2(x, y) one may prefer to take the polynomial

W
′

2(x, y) =
W1(x, y)3 −W2(x, y)

48
= x4y4(x4 − y4)4.

The following reformulation of Theorem 2 describes the properties of the weight
function of self-dual doubly-even code.

Theorem 4 (Gleason [11]) The weight function of a self-dual doubly-even code is a
polynomial in W1 and W

′
2 .

Corollary 5 The length of binary self-dual doubly-even code is a multiple of 8.

Theorem 4 was used to �nd an upper bound for the minimal distance of self-dual
doubly-even codes.

Let C denote an [n, n/2, d] self-dual doubly-even code with the weight function

W (x, y) = xn + Adx
n−dyd + . . . =

n/4∑
j=0

A4jx
n−4jy4j, (11)

which is a polynomial in W1(x, y) and W
′
2(x, y) (Theorem 4). Since degW (x, y) = n ,

it may be written as follows:

W (x, y) =
D∑
j=0

ajW1(x, y)n−24jW
′

2(x, y)j, (12)

where D =
⌊

n
24

⌋
.

From (11) and (12) we get:

D∑
j=0

ajW1(x, y)n−24jW
′

2(x, y)j =

n/4∑
j=0

A4jx
n−4jy4j. (13)

We choose now a0, a1, . . . , aD ∈ Z so that the greatest possible number of the leading
terms in W (x, y) equal zero. The corresponding polynomial W ∗(x, y) will be the weight
function of the self-dual doubly-even code with the greatest minimum weight possible,
that we hope to reach. It is called the extremal weight function.

If the code with the weight function W ∗(x, y) exists then it has the minimum dis-
tance d∗ = 4(D + 1) . This result is stated in the following

Theorem 6 (Mallows and Sloane [18]) The number A∗4D+4 of codewords of the
minimum weight in the extremal weight function is given by the following expressions:(

n

5

)(
5D − 2

D − 1

)
/

(
4D + 4

5

)
, if n = 24D; (14)

1

4
n(n− 1)(n− 2)(n− 4)

(5D)!

D!(4D + 4)!
, if n = 24D + 8; (15)

3

2
n(n− 2)

(5D + 2)!

D!(4D + 4)!
, if n = 24D + 16. (16)
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and this number is never equal to zero. Thus, the minimum distance of the self-dual
doubly-even code of length n equals at most 4 bn/24c+ 4.

For large n the weight function contains a negative coe�cient and thus the described
bound cannot be reached and there is no extremal doubly-even code.

Mallows and Sloane have not given an explicit bound for n . The best of what we
know today is a result of Zhang ([26]), by which there is no extremal code for n > 3928 .

From now on we shall concentrate on the case n = 24m . If 24 divides length of
C then the codewords of a �xed weight form a 5-design (Assmus and Mattson [1]).
[24m, 12m, 4m + 4] extremal codes are also of great interest because of the bound
from Theorem 6. But there are only two known examples of such extremal codes: the
[24, 12, 8] Golay code and the [48, 24, 12] code � which are both Quadratic Residue
codes.
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2 Examples of extremal codes

� 1. De�nitions

Here we shall introduce some de�nitions crucial for coding theory and necessary for this
and subsequent chapters.

De�nition 2 Matrix G is called a generator matrix of the binary [n, k]-code C if all
codewords of C can be obtained as linear combinations of the rows of G

Remark 1 If F2 is the binary �eld then the operation of acting on all vectors from F2

is equivalent to writing out all linear combinations of rows of matrix G.

Let R denote the ring F2[x]/(xn − 1) .

De�nition 3 The code C ⊆ R is called a cyclic code if it is an ideal of the ring R .
The cyclic code contains all shifts of any of its codewords.

Remark 2 An ideal of the ring R (and thus a cyclic code) can be generated by a single
polynomial.

Let C be a cyclic code, g(x) being a generating polynomial.

De�nition 4 A polynomial

h(x) = (xn − 1)/g(x) =
k∑

i=0

hix
i, hk 6= 0

is called check polynomial.

The reason of this name is given by the following fact. If

c(x) =
n−1∑
i=0

cix
i ≡ f(x)g(x) mod xn − 1

is an arbitrary codeword from C then

c(x)h(x) =
n−1∑
i=0

cix
i

k∑
j=0

hjx
j = f(x)g(x)h(x) = 0.

The coe�cient at xj in this product is equal

n−1∑
i=0

cihj−i, j = 0, 1, . . . , n− 1, (17)
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where the indices are taken modulo n . The equations (17) de�ne check equations,
which the code must satisfy. Let

H =


hk . . . h2 h1 h0

hk . . . h2 h1 h0
. . . . . . . . . . . . . . . . . . . .

hk . . . h2 h1 h0

 , (18)

Then (17) means that, if c ∈ C then HcT = 0 . Since k = deg h(x) = n − deg g(x)
is the dimension of C and since the rows of H are lineary independent, the condition
HcT = 0 is also su�cient for a vector c to belong to the code. Thus H is a check
matrix of the code C .

Lemma 7 The dual code C⊥ is the cyclic code with the generating polynomial

g⊥(x) = xdeg h(x)h(x−1).

Proof. The statement results from (18). 2

According to this theorem the code with generating polynomial h(x) is equivalent
to the code C⊥ . In fact it consists of the codewords of C⊥ , written in the inverse order.

De�nition 5 The automorphism group Aut(C) of a linear code C in Fn2 is de�ned as
the group of monomial matrices M ∈ GL(n,K) that leave C invariant, i.e. CM = C.
A matrix M is called monomial if M has only one element nonequal 0 from F2 in
every row and every column.

Remark 3 For F2 a monomial matrix is a permutation matrix. So if C is a linear
code over a binary �eld then:

Aut(C) = {σ| σ(c) ∈ C ∀c ∈ C}.

De�nition 6 A polynomial E(x) in R is called an idempotent if E(x) = E2(x) =
E(x2).

De�nition 7 A cyclotomic class modulo n over GF (q) is de�ned as:

Cs = {s, sq, sq2, . . . , sqms−1},

where sqms ≡ s (mod n). (Choosing the smallest integer as s in Cs is convenient but
not essential.) The set of integers modulo n breaks up into cyclotomic classes:

{0, 1, . . . , n− 1} =
⋃
s

Cs,

where s runs over the set of representatives of classes modulo n.

De�nition 8 Let the group G act on the set X . The group action G × X → X is
called transitive if for any two x, y ∈ X there exists a g ∈ G such that g · x = y . The
group action is called n-transitive if for any pairwise distinct x1, . . . , xn and pairwise
distinct y1, . . . , yn there is a g ∈ G such that g · xk = yk for 1 ≤ k ≤ n.
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� 2. Quadratic Residue codes

Since the both known examples of extremal self-dual doubly-even codes belong to the
class of Quadratic Residue codes we will need to know what these codes are. The
information introduced here will be used in following chapters. Also the main result of
the thesis is inseparably linked with Quadratic Residue codes.

Binary Quadratic Residue codes are cyclic codes (i.e. all shifts of a codeword still
belong to the code) over the �eld F2 with length p , where p is a prime number, 2 being
a quadratic residue modulo p . It means that p ≡ ±1 (mod 8) .

Let Q denote the set of quadratic residues modulo p , N denoting the set of non-
residues. If ρ is a primitive element of GF(p) then ρe ∈ Q if and only if e is even,
and ρe ∈ N i� e is odd. Thus Q is a cyclic group, generated by the element ρ2 . Since
2 ∈ Q , the set Q is closed under multiplication by 2 . Hence Q is a union of disjoint
cyclotomic classes modulo p . Thereby if α is a primitive p-th root of unity in the �eld
extension of F2 then the coe�cient of polynomials

q(x) =
∏
r∈Q

(x− αr) and n(x) =
∏
n∈N

(x− αn) (19)

lie in the �eld F2 . And
xp − 1 = (x− 1)q(x)n(x). (20)

Once again we put R = F2[x]/(xp − 1) .

De�nition 9 Quadratic Residue codes L, L, N , N are the cyclic codes (ideals) of
ring R , generated correspondingly by polynomials

q(x), (x− 1)q(x), n(x), (x− 1)n(x). (21)

Sometimes L and N are called extended QR-codes.

Since the permutation x→ xn (n is a �xed nonresidue) of the set of coordinates of
R translates L into N and vice versa, these two codes are equivalent.

For the minimal distance of a QR-code holds

Theorem 8 (Square root bound for minimal distance) If d is the minimal dis-
tance of the code L or N then d2 ≥ p. If p = 4k−1 then this bound may be strengthened
as follows:

d2 − d+ 1 ≥ p. (22)

Proof. Let a(x) be a codeword of minimal nonzero weight d in the code L . If n is a
nonresidue then ā(x) = a(xn) is a word of minimal weight in N . Hence a(x)ā(x) must
belong to intersection L ∩N , i.e. be a multiple of a polynomial

∏
r∈Q

(x− αr)
∏
n∈N

(x− αn) =

p−1∏
j=1

(x− αj) =

p−1∑
j=0

xj. (23)

Hence, the weight of product a(x)ā(x) equals p . Since the weight of polynomial
a(x) equals d , the maximal number of nonzero coe�cients in a(x)ā(x) is at most d2 .
So d2 ≥ p .
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If p = 4k − 1 we can choose n = −1 . Then in the considered product there are d
factors, that are equal 1 , so that maximal weight is at most d2 − d+ 1 . 2

If p = 4k−1 then one can choose α so that the generating idempotents of the codes
L , L , N , N would correspondingly be:

Eq(x) =
∑
r∈Q

xr; Eq(x) = 1 +
∑
n∈N

xn; En(x) =
∑
n∈N

xn; En(x) = 1 +
∑
r∈Q

xr. (24)

Theorem 9
L⊥ = L; N⊥ = N, if p = 4k − 1; (25)

L⊥ = N; N⊥ = L, if p = 4k + 1. (26)

In both cases L is generated by L and the all-ones vector, N is generated by N and
the all-ones vector.

Let us �nd the generating matrices of these codes. Let

Fq(x) =

p−1∑
i=0

fix
i

be the idempotent, generating the code L . Then the generating matrix of the code L

is a p× p cyclic matrix

G = (gij) =


f0 f1 . . . fp−1
fp−1 f0 . . . fp−2
...

...
. . .

...
f1 f2 . . . f0

 , (27)

where 0 ≤ i ; j ≤ p−1 ; gij = fj−i and indices are calculated modulo p . The generating
matrix of the code L is [

G
1 1 . . . 1

]
, (28)

Similar equalities take place for N and N . The rank of the matrix G is (p− 1)/2 .
QR-codes allow extensions by adding an even parity check, so that

(L̂)⊥ = L̂; (N̂)⊥ = N̂, if p = 4k − 1,

(L̂)⊥ = N̂; if p = 4k + 1;

}
(29)

where � .̂ � means the extended code. The codes L̂ and N̂ are [p+ 1, (p+ 1)/2]-codes.

Theorem 10 If p = 4k − 1 then the extended QR-codes L̂ and N̂ are self-dual.
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Proof. We can get the generating matrix of the code L̂ from the matrix (28) by adding
a column:

Ĝ =


G

0
0
...
0

1 1 . . . 1 1

 , (30)

Since L ⊂ (L)⊥ , each row of G is orthogonal to itself and to any other row of

G . Hence, each row of Ĝ is orthogonal to itself and to any other row of Ĝ , so that
L̂ ⊂ (L̂)⊥ . And since the rank of Ĝ is equal (p+ 1)/2 , then L̂ = (L̂)⊥ . 2

Remark 4 If p = 4k + 1 then the extended code can be de�ned so that the equality
L̂ = (N̂)⊥ holds.

Lemma 11 Let C be a binary code, C ⊂ C⊥ . Each codeword of C has an even weight.
Moreover, if the weight of each row of the generating matrix of C is a multiple of 4,
then this property holds for each codeword of C.

Theorem 12 If p = 4k − 1 then the weight of each word of the code L̂ is a multiple
of 4, and the weight of each word of the code L is congruent 0 or 3 modulo 4.

Proof. If 2 is a quadratic residue modulo p than p = 8m ± 1 . Thus we can assume,
that p = 8m− 1 . The number of residues and nonresidues in this case is equal 4m− 1
and thus the weight of each row of matrix G is a multiple of 4 . The statement of the
theorem results from Lemma 11. 2

Remark 5 If p = 4k+ 1, then the only thing one can say about the weight of words of
the code L̂ is that it is even.

We will show now that the extended QR-code L̂ is invariant under the permutation
group PSL2(p) .

De�nition 10 Let p = 8m± 1 be a prime number. The collection of all permutations
on the set {0, 1, 2, . . . , p− 1,∞} of the form

y → ay + b

cy + d
, (31)

where a, b, c, d ∈ GF (p) and ad−bc = 1 form a group, called the projective special liner
group PSL2(p) (it is sometimes also called the linear fractional group).
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Lemma 13 (a). The group PSL2(p) is generated by three permutations:
S : y → y + 1;
V : y → ρ2y;
T : y → −(1/y),

(32)

where ρ is a primitive element of the �eld GF (p).

(b). The group PSL2(p) consists of p(p2 − 1)/2 permutations of the form

V iSj : y → ρ2iy + j;

V iSjTSk : y → k − (ρ2iy + j)−1.

Proof. A typical element of the group PSL2(p)

y → ay + b

cy + d
, ad− bc = 1,

may be written either as y → ay2 + ab , if c = 0 (since in this case d = 1/a), or as

y → a

c
− 1

c2y + cd
, if c 6= 0 (since in this case b =

ad

c
− 1

c
) . It gives respectively V iSab

(where a = ρi ) and V iScdTSa/c (where c = ρi ). 2

Proposition 14 The group PSL2(p) acts 2-transitively on {0, 1, . . . , p− 1,∞}.

Lemma 15 (Perron [21]) (i). Let p = 4k − 1, let r1, . . . , r2k be 2k quadratic
residues modulo p, including 0, and let a be coprime p. Then among 2k numbers
of the form ri + a there are k residues (possibly including 0) and k nonresidues.

(ii). Let p = 4k − 1, let n1, . . . , n2k−1 be (2k − 1) nonresidues modulo p and let a be
coprime p. Then among 2k − 1 numbers of the form ni + a there are k residues
(possibly including 0) and k − 1 nonresidues.

(iii). Let p = 4k+1. Among 2k+1 numbers of the form ri +a there are k+1 residues
(including 0) and k nonresidues, if a is residue itself, and k residues (excluding
0) and k + 1 nonresidues, if a is nonresidue.

(iv). Let p = 4k + 1. Among 2k numbers of the form ni + a there are k residues (ex-
cluding 0) and k nonresidues, if a is residue itself, and k+ 1 residues (including
0) and k − 1 nonresidues, if a is nonresidue.

Theorem 16 (Gleason and Prange) If p = 8m ± 1 then the extended QR-code L̂
is invariant under the group PSL2(p).

Proof. Since the generating idempotent of the code L is invariant under permutation
V , permutation S being a cyclic shift, then the code L , and thus the code L̂ are
invariant under S and V . According to Lemma 13 we now shall prove the invariance
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of L̂ under permutation T . We shall consider only the case p = 8m−1 and show, that
each row of the matrix (30), i.e. the matrix

Ĝ =


G

1
1
...
1

1 1 . . . 1 1

 , (33)

is transformed under the action of permutation T into another word of the code L̂ .
1) The �rst row of matrix Ĝ , say, R0 is equal∣∣∣∣∣1 +

∑
n∈N

xn

∣∣∣∣∣ 0
∣∣∣∣∣ .

Then

T (R0) =

∣∣∣∣∣∑
r∈Q

xr

∣∣∣∣∣ 1
∣∣∣∣∣ = R0 + 1 ∈ L̂.

2) Let s ∈ Q ; (s+ 1) row of the matrix Ĝ is equal:

Rs =

∣∣∣∣∣xs +
∑
n∈N

xn+s

∣∣∣∣∣ 0
∣∣∣∣∣ .

We shall show, that T (Rs) = R−1/s + R0 ∈ L̂ . For that we shall separately for each
member of the equality analyze the coordinates containing symbol 1 . Vector T (Rs)
contains symbol 1 at the coordinates −1/s and −1/(n+ s) for n ∈ N , what includes
∞ (if n = −s), 2m−1 residues and 2m nonresidues (according to Lemma 15). Vector

R−1/s =

∣∣∣∣∣x−1/s +
∑
n∈N

xn−1/s

∣∣∣∣∣ 0
∣∣∣∣∣

contains symbol 1 at the coordinates −1/s and n−1/s , including 2m residues and 2m
nonresidues. Hence, T (Rs)+R−1/s contains symbol 1 at the coordinate ∞ and symbol
0 at the coordinate −1/s (nonresidue). If −1/(n+ s) ∈ N then −1/(n+ s) = n′− 1/s
for some n′ ∈ N , and symbols 1 cancel out. Thus, coordinates, corresponding to
nonresidues always contain symbol 0 . On the other hand, if −1/(n + s) ∈ Q , then
−1/(n+s) 6= n′−1/s , for all n′ ∈ N and coordinates, corresponding to residues contain
symbol 1 . Thus,

T (Rs) +R−1/s =

∣∣∣∣∣∑
r∈Q

xr

∣∣∣∣∣ 1
∣∣∣∣∣ = R0 + 1.

Similarly, if t ∈ N , then T (Rt) = R−1/t +R0 . 2
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From Theorem 16 it results that the group Aut (C) contains PSL2(p) . There are

cases, when Aut (C) is indeed larger than PSL2(p) . If p = 7 the code L̂ is a [8, 4, 4]

Hamming code and
∣∣∣Aut (L̂)

∣∣∣ = 1344 ([17, Chapter 13, Theorem 24]). And if p = 23

the code L̂ is an extended Golay code and its automorphism group Aut (L̂) is equal to
the Mathieu group.

It seems plausible that for other values of p the group Aut (L̂) is isomorphic to the
group PSL2(p) . This conjecture holds in many cases.

Theorem 17 (Assmus and Mattson) If (p − 1)/2 is a prime and 5 < p ≤ 4079

then, excluding the two cases, the group Aut (L̂) is equal (isomorphic) to the group
PSL2(p).

� 3. The Golay code

The Golay code is perhaps one of the most important of all codes. It is a [24, 12, 8]
Quadratic Residue code, but for closer familiarity we shall use the following

De�nition 11 The extended Golay code G24 is the code with generator matrix G:

l∞ l0 l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 r∞ r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 row
1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 2
1 1 1 1 1 1 1 1 3
1 1 1 1 1 1 1 1 4
1 1 1 1 1 1 1 1 5
1 1 1 1 1 1 1 1 6
1 1 1 1 1 1 1 1 7
1 1 1 1 1 1 1 1 8
1 1 1 1 1 1 1 1 9
1 1 1 1 1 1 1 1 10
1 1 1 1 1 1 1 1 1 1 1 1 1 11

the columns are numbered as follows: l∞, l0, . . . , l10, r∞, r0, . . . , r10 .

One can easily notice that the sum of any two rows of G has the weight 8.

Lemma 18 The code G24 is self-dual: G24 = G⊥24 .

Proof. If u and v are two (not necessarily di�erent) rows of G then wt(〈u, v〉) ≡ 0
(mod 2) . Hence each row of G is orthogonal to all other rows and thus G24 ⊂ G⊥24 . But
the rank of G is 12 , that is why the code G24 has dimension 12 , and hence G24 = G⊥24 .

2

Remark 6 Since G24 is self-dual and the weight of any row of its generator matrix G
is a multiple of 4, the code G24 is doubly-even.

14



Lemma 19 If the code G24 contains the codeword |L|R|, where L = a∞a0a1a2 . . . a10 ,
R = b∞b0b1b2 . . . b10 , then it contains a codeword |L′|R′|, where L′ = b∞b0b10b9 . . . b1
and R′ = a∞a0a10a9 . . . a1 .

Remark 7 It follows directly from Lemma that if the code G24 contains a codeword
|L|R| with weights wt(L) = i and wt(R) = j then it contains a codeword |L′|R′| with
weights wt(L′) = j ; wt(R′) = i.

By Remark 6 for weights of the codewords in G24 we have the following possibilities:
0 , 4 , 8 , 12 , 16 , 20 , 24 .

If for some u we have wt(u) = 20 then wt(u + 1) = 4 . We show now, that there
are no codewords of weight 4 in the code, and thus there are no words of weight 20 .

Lemma 20 The code G24 does not contain the codewords of weight 4.

Proof. For each codeword |L|R| from G24 we have that wt(L) ≡ wt(R) ≡ 0 (mod 2) .
By previous Lemma we can assume that the codeword of weight 4 belongs to one of
the following types.

(1) wt(L) = 0, wt(R) = 4 ;

(2) wt(L) = 2, wt(R) = 2 .

Condition (1) is not possible: wt(L) = 0 if we take either no rows at all or only
the last row of G . In these cases wt(R) = 0 or 12 . Condition (2) is not possible
either, because if wt(L) = 2 then L equals sum of one or two rows of G , possibly with
addition of the last row. In each of these cases wt(R) = 6 . 2

So in the code G24 there are only weights 0 , 8 , 12 , 16 , 24 . As earlier we denote
by Ai the number of the codewords of weight i . Then A0 = A24 = 1 ; A8 = A16 .
For each left part of the codeword L there are two corresponding right parts R and R
(due to last row of G). If wt(L) = 0 , then wt(R) 6= 4 (by Lemma 20) and wt(R) 6= 8
(else wt(R) = 4 which contradicts Lemma 20 once again), thus wt(R) = 0 or 12 . If
wt(L) = 2 , then by the same reasoning we have that wt(R) = 6 . Continuing like this
we get the following possibilities for weight distribution in the code G24 :

Number wt(L) wt(R) wt(R) Full weight

1 0 0 12 0 12

11 +

(
11

2

)
2 6 6 8 8(

11

3

)
+

(
11

4

)
4 4 8 8 12

α =? 6 2 10 8 16
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By Lemma 19 α is equal the number of codewords of the type (2, 6) that is

2

(
11 +

(
11

2

))
.

Hence A8 =

(
11 +

(
11

2

))
+

(
11

3

)
+

(
11

4

)
= 759 , and thus A12 = 2576 . Thus we

have shown that the weight spectrum of the code G24 is

i : 0 8 12 16 24
Ai : 1 759 2576 759 1

Since now all the presented properties of the Golay-code G24 were achieved directly
from the de�nition of the code through the generator matrix.

Since the Golay code G24 is the extended quadratic residue code, it is invariant
under the group PSL2(23) . But we will show, that its automorphism group is a larger
Mathieu group.

The coordinates of the code G24 will be enumerated by the elements of the set
Ω = {0, 1, . . . , 22,∞} , where the last coordinate corresponds to the general even parity
check. Let the sets:

Q = {1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18};
N = {5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22} (34)

denote quadratic residues and nonresidues modulo 23 .
We will de�ne the code G23 as the cyclic code with generating idempotent

θ(x) =
∑
i∈N

xi (35)

and generating polynomial

(1 + x+ x20)θ(x) = 1 + x2 + x4 + x5 + x6 + x10 + x11. (36)

The the code G24 is obtained by adding the general even parity check to the code
G23 , and its generating matrix is 

Π

1
1
...
1

1 1 . . . 1 1

 , (37)

where Π is a 23 × 23-circulant matrix, θ(x) being its �rst row. The (i + 1)-st row of
the matrix (37) is equal |xiθ(x)|1| , where 0 ≤ i ≤ 22 .

According to Theorem 16 the code G24 is invariant under the group PSL2(23) of
order 1

2
· 23 · (232 − 1) = 6072 . It is generated by the permutations of element of the

set Ω ((38)):

S : i→ i+ 1;
V : i→ 2i;
T : i→ −1

i
,

(38)
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In other words,

S = (∞)(0 1 2 3 . . . 22);

V = (∞)(0)(1 2 4 8 16 9 18 13 6 12)(5 10 20 17 11 22 21 19 15 7 14);

T = (∞ 0)(1 22)(2 11)(3 15)(4 17)(5 9)(6 19)(7 13)(8 20)(10 16)(12 21)(14 18).

De�nition 12 ([7]) The Mathieu group M24 is a group generated by permutations S ,
V , T and W , where

W :


∞→ 0, 0→∞
i→ −(1

2
i)2, if i ∈ Q,

i→ (2i)2, if i ∈ N,
(39)

or equivalently

W = (∞ 0)(3 15)(1 17 6 14 2 22 4 19 18 11)(5 8 7 12 10 9 20 13 21 16).

Theorem 21 The code G24 is invariant under the group M24 .

Proof. We only have to check, that the code G24 is invariant under the permutation
W . Clearly

W (|θ(x)|1|) = |θ(x)|1|+ 1 ∈ G24;

W (|xθ(x)|1|) = |x2θ(x) + x11θ(x) + x20θ(x)|1| ∈ G24;

W (|x22θ(x)|1|) = |θ(x) + xθ(x) + x20θ(x) + x22θ(x)|0| ∈ G24.

Now we use the identity

VW = W 2V = (∞ 0)(18 21)(1 22 16 20 6 10 13 15 12 17)(2 19 3 14 8 5 9 11 4 7). (40)

Since V (|xiθ(x)|1|) = |x2iθ(x)|1| , we obtain that

W (|x2iθ(x)|1|) = (VW )(|xiθ(x)|1|) = (WV 2)(|xiθ(x)|1|),

and thus W convert each row of (37) into the codeword of G24 . 2

Proposition 22 ([7]) (a). The group M24 is 5-transitive.

(b). |M24| = 24 · 23 · 22 · 21 · 20 · 48 = 244823040.

In general for QR-codes there is no better result concerning the automorphisms
group then Theorem 16. Notice that it claims only, that if C is a [p + 1, (p + 1)/2]
extended QR-code then PSL2(p) ⊂ AutC . For the Golay code G24 we can not only
extend the automorphisms group (PSL2(23) ⊂M24 ⊂ AutC). Also holds

Theorem 23 M24 is the full automorphisms group of the code G24 , i.e. M24 =
AutG24 .
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� 4. A quadratic residue [48, 24, 12] code

According to Theorems 10 and 12 a [48, 24] QR-code is a self-dual doubly-even code.

Theorem 24 (Sphere-packing bound, or Hamming bound) If there is a binary
code of length n, correcting t errors and containing M codewords, then the following
inequality holds

M

(
1 +

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

t

))
≤ 2n. (41)

Theorem 25 (van Tilborg [25]) If L is a binary QR-code of the length p = 8m− 1
and d2 − d+ 1 = p, then:

(i) p = 64i2 + 40i+ 7 ≥ 2551 and d = 8i+ 3 for some i;

(ii) there exists a projective plane of order d− 1.

If d2 − d+ 1 > p then d2 − d− 11 ≥ p.

Proposition 26 Let the code C be invariant under a transitive permutation group.
Then:

(i). Removal of any coordinate leads to equivalent codes C∗ .

(ii). If the weights of all words of the code C are even then the minimal weight in the
code C∗ is odd.

It results from this theorem that the minimal distance d of the [47, 24] QR-code
satis�es the condition d ≥ 11 . Inequality d ≥ 13 is not possible by the sphere-packing
bound (Theorem 24). Hence, according to Theorem 12, d equals 11 or 12 . But by
Proposition 26, d must be odd, which results that d = 11 . And hence the minimal
distance of [48, 24] QR-code is actually 12 .

The weight function of the code is a homogenous polynomial of degree 48 :

W (x, y) = x48 + A12x
36y12 + . . . . (42)

The coe�cients by x47y, x46y2, . . . , x37y11 are equal to zero. Here A12 is an unknown
number of codewords of weight 12. Remarkably that because of the expression (42) the
weight function of the code is fully de�ned by Theorem 4. It states that W (x, y)
must be a polynomial of W1(x, y) and W

′
2(x, y) . And since W (x, y) is a homogenous

polynomial of degree 48 , W1 is homogenous of degree 8 and W
′
2 homogenous of degree

24 , W (x, y) must be a linear combination of W 6
1 , W

3
1W

′
2 and (W

′
2)

2 .
Thus, Theorem 4 states that

W (x, y) = a0W
6
1 + a1W

3
1W

′

2 + a2(W
′

2)
2 (43)

for some real a0, a1, a2 . Expanding (43) we have

W (x, y) = a0(x
48 + 84x44y4 + 2946x40y8 + . . .)+

+a1(x
44y4 + 38x40y8 + . . .) + a2(x

40y8 − . . .),
(44)
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and, equating coe�cients in (43) and (44) we obtain that

a0 = 1; a1 = −84; a2 = 246.

Hence, W (x, y) is de�ned uniquely. Substituting a0, a1, a2 into (44) we �nd that

W (x, y) = x48 + 17 296 x36y12 + 535 095 x32y16 + 3 995 376 x28y20+

+7 681 680 x24y24 + 3 995 376 x20y28 + 535 095 x16y32 + 17 296 x12y36 + y48.
(45)

Direct computation of this weight function would have required �nding the weights
of every of 224 ≈ 1, 7·107 codewords, i.e. considerable timeconsuming for any computer.
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3 Results on putative self-dual doubly-even [72, 36, 16]

and [96, 48, 20] codes

In 1973 Sloane [24] posed a question which remained unresolved until now: is there a
self-dual doubly-even [72, 36, 16] code?

The automorphism group of the extended Golay code is the 5-transitive Mathieu
group M24 of order 210 · 33 · 5 · 7 · 11 · 23 . The automorphism group of the extended
quadratic residue [48, 24, 12]-code is only 2-transitive. It is isomorphic to the projective
special linear group PSL2(47) and has order 24 · 3 · 23 · 47 . Both M24 and PSL2(47)
are nonabelian simple groups, and so in particular are not solvable.

De�nition 13 A normal series of a group G is a �nite sequence (A0, . . . , Ar) of sub-
groups such that

I = A0 � A1 � . . .� Ar = G.

A section of G is a quotient group Ak+1/Ak for some index k < r . G is a solvable
group i� all sections are Abelian.

Every �nite group of order < 60, every Abelian group, and every subgroup of a
solvable group is solvable.

Here we shall collect known facts about the automorphism group of a putative self-
dual doubly-even [72, 36, 16] code C . Primes larger than 7 cannot divide its order
(see [8], [13], [22], [23]). Permutations of odd composite orders except 9 cannot be
automorphisms of such a code (see [10]). If σ ∈ Aut (C) has order 5 or 7 , then σ �xes
two coordinates ([10]); if σ has order 2 or 3 , then it is a �xed-point-free permutation
(see [4] and [5]).

Finally, from [6] we got to know, that the automorphism group of a [72, 36, 16] code
is a solvable group of order 5, 7, 10, 14, 56 , or a divisor of 72 .

And if we talk about primes, that may occur in the order of the automorphism
group of the code, only 2 , 3 , 5 and 7 survived for the [72, 36, 16] code. For the binary
self-dual doubly-even [96, 48, 20] code only 2 , 3 , and 5 are possible ([9]).

20



4 Primes dividing the order of the automorphism

group of self-dual codes

Applying representation theoretical methods we show how to exclude special primes in
the automorphism group of an arbitrary self-dual not necessarily extremal code. This
may be applied attacking the existence of larger extremal codes.

De�nition 14 For an odd number n ∈ N let s(n) denote the smallest non-negative
integer such that 2s(n) ≡ 1 (mod n). Thus s(n) is the order of 2 mod n.

In the following let C be a binary self-dual code of length n ≥ 4 with automorphism
group Aut(C) . Let σ ∈ G be of order p where p is an odd prime. The action of σ on
the positions produces c cycles of length p and f �xed points. We say that σ is of
type p− (c, f) .We shall prove

Theorem 27 If s(p) is even then c is even.

As a special result of Theorem 27 we get an early result of Hu�man.

Corollary 28 (Hu�man, [12])

a) If 2 is a primitive root mod p then c is even.

b) If p ≡ 1 mod 4 and p 6= 1 mod 8 then c is even.

Proof. In both cases we have s(p) = p− 1 . 2

In order to prove Theorem 27 we repeat some well-known fact in representation
theory. Let G be a �nite group and let k be any �eld.

De�nition 15 The group algebra kG, where k is a �eld and G is a group with op-
eration ◦, is the set of all linear combinations of �nitely many elements of G with
coe�cients in k , hence of all elements of the form

a1g1 + a2g2 + · · ·+ angn,

where ai ∈ k and gi ∈ G for all i = 1, . . . , n. This element can be denoted in general
by ∑

g∈G

agg,

where it is assumed that ag = 0 for all but �nitely many elements of G. kG is an
algebra over k with respect to the addition de�ned by the rule∑

g∈G

agg +
∑
g∈G

bgg =
∑
g∈G

(ag + bg)g,
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the product by a scalar given by

a
∑
g∈G

agg =
∑
g∈G

(a ag)g,

and the multiplication

(
∑
g∈G

agg)(
∑
g∈G

bgg) =
∑

g∈G,h∈G

(agbh)g ◦ h.

From this de�nition, it follows that the identity element of G is the unit of kG, and
that kG is commutative i� G is an Abelian group.

If the �eld k is replaced by a unit ring R , the addition and the multiplication de�ned
above yield the group ring RG.

De�nition 16 The concept of a module over a ring is a generalization of the notion
of vector space, where instead of requiring the scalars to lie in a �eld, the �scalars� may
lie in an arbitrary ring.

A right R-module over the ring R consists of an abelian group (M,+) and an
operation M × R → M (called scalar multiplication) such that for all r, s ∈ R , x, y ∈
M , we have

1. (x+ y)r = xr + yr

2. x(r + s) = xr + xs

3. x(rs) = (xr)s

4. x1 = x

Usually we write �a right R-module M � or MR . Left modules can be de�ned similarly.
If R is commutative, then right R-modules are simply called R-modules.

De�nition 17 Suppose M is a left R-module and N is a subgroup of M . Then N is
a submodule (or R-submodule, to be more explicit) if, for any n ∈ N and any r ∈ R ,
the product rn is in N (or nr for a right module).

A module S is called simple if S 6= {0} and whose only submodules are {0} and S .
Simple modules are sometimes called irreducible.

kG-modules are always assumed to be �nite dimensional.

De�nition 18 Let W be a right kG-module. We put

W ∗ = Homk(W,k)

and call W ∗ the dual module of W . W ∗ becomes a right kG-module if we put

(fg)(w) = f(wg−1) for f ∈ Homk(W,k), g ∈ G and w ∈ W.
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If W ∼= W ∗ then W carries a non-degenerate G-invariant k -bilinear form, say b (see
[14, Chapter VII, Lemma 8.10]). Here G-invariance means that b(w1g, w2g) = b(w1, w2)
for all w1, w2 ∈ W and all g ∈ G .

With this notation we have the following fact.

Lemma 29 If W ∼= W ∗ and if V is a kG-submodule of W then

W/V ⊥ ∼= V ∗ (46)

where V ⊥ is the orthogonal of V in W w.r.t. the form b. If in addition V = V ⊥ , then
the multiplicity of any simple self-dual kG-module as composition factor of W is even.

Proof. We de�ne a map α : W → V ∗ by

α(w)(v) = b(w, v) for w ∈ W, v ∈ V.

α is kG-linear since G-invariance of the form b implies

α(ag)(v) = b(ag, v) = b(a, vg−1) = α(a)(vg−1) = (α(a)g)(v).

Furthermore, ker(α) = V ⊥ . Thus α induces a monomorphism

ᾱ : W/V ⊥ → V ∗.

Since b is non-degenerate we have

dimW = dimV + dimV ⊥ = dimV ∗ + dimV ⊥.

Thus the map ᾱ is a kG-isomorphism.
Let X ∼= X∗ be a simple composition factor of W . Then X has multiplicity m as

composition factor of V ⊥ = V i� X ∼= X∗ has multiplicity m as composition factor of
V ∗ . Thus the multiplicity of X as composition factor of W is even. 2

Lemma 30 ([20]) Let k = F2 . If G is a �nite group of odd order then the following
conditions are equivalent.

a) There exists a non-trivial irreducible self-dual kG-module V .

b) s(p) is even for some prime p 6= 2 with p | |G|.

Proof of Theorem 27. Let G = 〈σ〉 and let k be the binary �eld. Suppose that σ is
of type p− (c, f) , i.e. has exactly c p-cycles on the set of positions, f = n− cp being
the number of �xed points on the set of positions. In particular,

kn = kG⊕ . . .⊕ kG⊕ k . . .⊕ k (47)

as a kG-module where the number of kG 's is c and the number of k 's is f . Clearly,
C ∼= C∗ since kG ∼= kG∗ (see [14, Chapter VII, Lemma 8.23]) and obviously k ∼=
k∗ . Furthermore, by ([19, Proposition 3.4]), any non-trivial simple kG-module has

23



dimension s(p) . On the other hand, by Lemma 30, since s(p) is even the group algebra
kG contains at least one simple non-trivial self-dual module. Moreover, since G is
Abelian, any simple non-trivial module has multiplicity 1 as a composition factor of
kG . In particular, a simple non-trivial self-dual module has multiplicity c in kn . Thus
Lemma 29 implies that c must be even which proves Theorem 27.

For the binary self-dual doubly-even [120, 60, 24] code the Hu�man argument (Corol-
lary 28) rules out directly the primes 61, 67, 83, 101, 107 and 109 . Theorem 27 shows
that furthermore the primes 97 and 113 do not occur in the automorphism group.

In the following let k = F2 always denote the binary �eld and let C be an extremal
doubly-even self-dual [24m, 12m, 4m+ 4] code. By a result of Zhang [26] we know that
m ≤ 153 . From the previous chapters we know that for m = 1 and m = 2 such codes
are respectively the extended [24, 12, 8] Golay code with automorphism group M24 and
the extended quadratic residue code [48, 24, 12] with automorphism group PSL2(47) .
There are no other known examples of extremal codes of the form [24m, 12m, 4m+ 4] .
To be short we put n = 24m .

Theorem 31 ([3]) If σ ∈ G = Aut(C) is of type p − (c, f) for an odd prime p then
f ≤ c.

Now suppose that p > n
2
. Thus, by Theorem 31, σ is of type p − (1, 1) . Thus

n = 24m = p+ 1 , and in particular p ≡ −1 mod 8 . This yields that p−1
2

is odd.

Lemma 32 For p > n
2
we always have s(p) odd.

Proof. Note that 2 is a square root mod p since p ≡ −1 mod 8 , hence

2
p−1
2 ≡ 1 mod p.

Since s(p) | p−1
2

and p−1
2

is odd we are done. 2

Lemma 33 For the group algebra k 〈σ〉, where σ is of odd prime order, the trivial
module is the only irreducible self-dual module.

Proof. By Lemma 32 we know that s(p) is odd. The assertion follows now directly
from Lemma 30. 2

One can easily �nd all primes p of the form 24m − 1 for m ≤ 153 . It turns
out that apart from 6 primes, we always have s(p) = p−1

2
. The exceptions appear if

m = 18, 38, 46, 98, 112 or 133 .

Theorem 34 Apart from the 6 exceptions C is an extended QR code.
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Proof. The ambient space kn can be written as

kn = k 〈σ〉 ⊕ k.

Since s(p) = p−1
2

we have a decomposition

k 〈σ〉 = k ⊕ V ⊕W (48)

with irreducible modules V and W of dimension s(p) = p−1
2
. By Lemma 33 we have

V � V ∗ and W � W ∗ . On the other hand, a group algebra is always self-dual. Hence
W ∼= V ∗ and the decomposition in (48) is unique. If C0 is the subspace of C with 0 in
the last position then C0 = V or C0 = W . On the other hand we know that

kn = k ⊕Q⊕N

where Q is the code associated to the squares mod p and N to the non-squares. Since
Q is equivalent to N we may suppose that C0 = V = Q . Finally, C = 〈C0, c〉 , where c
is the all one word. This shows that C is an extended QR code. 2

Remark 8 The exceptions arise when s(p) 6= p−1
2
. The six cases are: m =

18, 38, 46, 98, 112 and 133.

5 Finding codewords of small weight in QR-codes

In the end of the previous chapter we have proven the very important theorem, which
connects extended QR- and extremal codes. If we assume that the prime p = n − 1
occurs in the automorphism group of an extremal code then we immediately have
that apart from the six exceptions this code is an extended Quadratic Residue code.
Inversely, if we show that these codes could not be extremal than it we will have that
n− 1 does not divide the order of the automorphism group (of course, only if we leave
the exceptions aside). Furthermore, the result of Bouyuklieva [3] yields that the primes,
larger than n/2 does not occur either.

The signi�cance of Theorem 34 is hard to underestimate since the both examples
of extremal [24m, 12m, 4m+ 4] codes are extended Quadratic Residue codes and have
n− 1 in its automorphism groups.

The further work in this chapter will concern the following

Problem 1 Can we show that an extended QR-code of length p+ 1 = 24m is extremal
only for m = 1 and m = 2?

Remark 9 By known result [16] it is true for m ≤ 21. But we have to check up to
m = 153.

We used the algorithm of Karlin and MacWilliams [15] to exclude some entries from
the list of extended QR-codes, for which p = n− 1 is a prime and s(p) = p−1

2
.
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Below we will give the explanation of the Karlin-MacWilliams algorithm. Is is
designed to �nd low weight vectors in Quadratic Residue codes for p = 8m− 1 .

Consider the QR code L , L̂ being the extended code. The permutation V : y →
g2y , where g is a primitive element of GF(p) , is an element of Aut(L) . The order of
this permutation is (p − 1)/2 . If this number is composite, say (p − 1)/2 = sf then
the code L contains codewords, invariant under the permutation U : y → g2sy . Let
U be the subcode of L , consisting of such words. We will show, how one can �nd the
subcode U for p = 8m− 1 .

Set e = 2s , p− 1 = ef , where s and f are odd. For i = 0, 1, . . . , e− 1 set

Ci = {gej+i, j = 0, 1, . . . , f − 1}.

We note that −1 = gsf , hence −1 ∈ Cs . In the ring R = F2[x]/(xp + 1) de�ne the
following polynomials:

J =

p−1∑
j=0

xj, Xi =
∑
c∈Ci

xc, X∗i =
∑
c∈Ci

x−c = Xi+s,

Q = X0 +X2 + . . .+Xe−2, N = X1 +X3 + . . .+Xe−1.

The weight of polynomial is the number of nonzero terms. The weight of Xi is f .
Since e is even, the exponents of x which occur in Q , N are respectively the quadratic
residues and nonresidues of p . Note, that since −1 ∈ Cs , it is a nonresidue.

Clearly, both Q and N are idempotents. In fact, they are the generating idempo-
tents of QR-codes, i.e. Eq and En from chapter 2, �2.

A polynomial f(x) is in 〈Q〉 if and only if f(x)Q = f(x) .
Assmus and Mattson [2] have investigated the case p = 8m + 1 , and sometimes

found polynomials Xi in 〈Q〉 . This cannot happen for p = 8m−1 and e > 2 . However
it mae happen that 1+Xw+X∗2w (for suitable w) is in 〈Q〉 , which then contains vectors
of weight 1 + 2f .

In order to detect this case, and others, we need the multiplication table for XiQ .
X0Q is a linear combination of the Xi , hence we may suppose that

X0Q =
s−1∑
j=0

ajX2j +
s−1∑
j=0

bjX
∗
2j.

(Note that X∗2j = X2j+s , so the second summation covers the odd subscripts.)
Let σ be the automorphism of R induced by x→ xg . Then σ2Xi = Xi+2 ; σ

2Q = Q .
Hence,

X2Q = σ2X0Q =
s−1∑
j=0

aj−1X2j +
s−1∑
j=0

bj−1X
∗
2j.

Let Φ be the automorphism of R induced by x → x−1 . Φ2Xi = X1 ; ΦQ = N .
Thus

X∗0N = ΦX0Q =
s−1∑
j=0

ajX
∗
2j +

s−1∑
j=0

bjX2j.
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Clearly N = Q+ J + 1 , hence, setting a = a+ 1 , and A = A+ J (mod 2) ,

X∗0Q = 1 +
s−1∑
j=0

bjX2j +
s−1∑
j=0

ajX
∗
2j +X∗0 .

The multiplication table may be condensed as follows

1 X0X2 · · ·Xe−2 X∗0X
∗
2 · · ·X∗e−2

1 ·Q 0 1 1 · · · 1 0 0 · · · 0

X0Q 0
...

... A B

Xe−2Q 0

X∗0Q 1
...

... B A+ I

X∗e−2Q 1

Here A , B are circulant matrices of size s× s , and I is the identity matrix. Set

M =



0 1 1 · · · 1 0 0 · · · 0
0
... A B
0
1
... B A+ I
1


and consider the rows of M as basis vectors for a code U of block length e + 1 . the
minimum weight vectors of U provide an upper bound for the minimum weight in 〈Q〉 .

Let a0a1 · · · as−1 , b0b1 · · · bs−1 be the �rst rows of A , B .

Lemma 35
s−1∑
i=0

ai ≡ 1 (mod 2),
s−1∑
i=0

bi ≡ 0 (mod 2).

Proof. Q2 = X0Q + X2Q + · · · + Xe−2Q , and is represented by the vector sum of the
rows 0|A|B . Since Q2 = Q = X0 + X2 + · · · + xe−2 , this vector sum must equal the
�rst row of M . Thus the sum of each column of A (B) is 1 (0) mod 2 . Since A , B
are circulant matrices, the same is true for each row of A , B . 2

For integer m , set

[m] =

{
1 if m is a quadratic residue of p,
0 if m is a nonresidue or 0.
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Lemma 36 We suppose that mi 6= 0, and use addition mod 2.

(i) If mi is a quadratic residue, [m1m2] = [m2].

(ii) [−mi] ≡ 1 + [mi](−1 is a nonresidue).

(iii) [m1] + [m2] ≡ 1 + [m1m2].

(iv) If f is odd, then

[m1] + [m2] + · · ·+ [mf ] ≡ [m1m2 · · ·mf ].

Let q = g2 be a generator of quadratic residues of p .

Lemma 37

ai = [qi − 1] + [qi − qs] + · · ·+ [qi − q(f−1)s],
bi = [−qi − 1] + [−qi − qs] + · · ·+ [−qi − q(f−1)s].

Proof. Write Q as
∑p−1

m=0[m]Xm . ai is the coe�cient of X2i in the product X0Q ; that

is , it is the coe�cient of xq
i
in the product

(x+ xq + · · ·+ xq
(f−1)s

)Q.

Similarly bi is the coe�cient of x−q
i
in this product. We note that for 1 ≤ i ≤ s−1 , the

quantities ±qi−qj (0 ≤ j ≤ f−1) in the above expressions for ai , bi are all nonzero. 2

Lemma 38 For i > 0,

ai = [qif − 1],

bi = [−qif − 1].

Proof. By Lemma 36,

ai = [qi − 1] + [qi − qs] + · · ·+ [qi − q(f−1)s]

Let F (w) =
∏f−1

j=0 (w − qsj) . The zeros of F (w) are the distinct f -th roots of unity
mod p . Hence,

F (w) = wf − 1 mod p,

and
ai = [F (qi)], bi = [F (−qi)].

2

Corollary 39 For s > i > 0 (addition mod 2),

(i) ai + as−i = 1,
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(ii) bi + bs−i = 0,

(iii) bi + a2i + ai = 0.

Proof.

(i) [q(s−i)f − 1] = [q−if (1− qif )] = 1 + [qif − 1] by Lemma 37.

(ii) [−q(s−i)f − 1] = [q−if (−1− qif )] = [−1− qif ] .

(iii) [q2if − 1] + [qif − 1] = 1 + [(qif − 1)2(qif + 1)] = 1 + [qif + 1] = [−qif − 1] by
Lemma 36.

2

Corollary 40 The statements of Corollary 39 imply

AT = A+ I,

BT = B,

B2 = A2 + A.

Since A and B are circulant matrices, it is convenient to treat them as polynomials
mod ys + 1 . In particular, the matrix A is invertible if and only if the polynomial

a(y) = a0 + a1y + a2y
2 + · · ·+ as−1y

s−1

has an inverse in the ring of polynomials mod ys + 1 .
Let ϕ denote a row vector of s zeros, and j a row vector of s ones. J denotes a

matrix with every entry one. Then

M =

 0 j ϕ
ϕT A B
jT B + J A+ I + J

 .

It is easy to check that
MMT = J,

hence
rankM ≤ (e+ 2)/2 = s+ 1.

Theorem 41 ([15]) M has rank s+ 1.

Proof. M has the same rank as

M ′ =

 0 j ϕ
jT A+B + J A+B + J + I
jT B + J A+ J + I

 .
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Let f1(y) , f2(y) be polynomials mod ys+1 corresponding to the matrices A+B+J
and A+B + J + I . Then

f2(y) = f1(y) + 1.

If the vector sum of a subset of the rows of

A+B + J, A+B + J + I

is zero, there exists a polynomial g(y) of degree ≤ s− 1 , such that

g(y)f1(y) ≡ g(y)f2(y) = 0 mod ys + 1.

Since g(y) is of degree ≤ s− 1 , clearly g(y) = 0 .
Every row of A + B + J has even weight, hence no subset of these rows can have

sum j , which is of odd weight.
Hence, the �rst s + 1 rows of M ′ are linearly independent, and the rank of M is

exactly s+ 1 . 2

Let

a(y) = a0 + a1y + · · ·+ as−1y
s−1,

b(y) = b0 + b1y + · · ·+ bs−1y
s−1

be the polynomials mod ys + 1 corresponding to the matrices A , B . The polynomial
corresponding to AT is

a(y)T = a0 + as−1y + · · ·+ a1y
s−1.

If f(y) = f(y)T , we say that f(y) is a symmetric polynomial. Let j(y) =
∑s−1

i=0 y
i . We

have

b(y2) = a(y2) + a(y),

a(y) + a(y)T = j(y) + 1.

The �rst of these equations gives a linear expression for the coe�cient bi in terms
od the ai . The matrix B is completely determined by the matrix A .

The polynomials a(y) may be partitioned into equivalence classes. The polynomials
equivalent to a(y) are obtained from a(y) by a di�erent choice of the generator g ; more
explicitly, if t is an integer prime to s , the polynomial a(yt) is equivalent to a(y) . The
corresponding matrices produce codes with the same weight structure. This is not to
say that di�erent equivalence classes produce codes with di�erent weight structure. In
fact there may be fewer weight patterns than equivalence classes. To see this fact we
need the following

Theorem 42 ([15]) If A is invertible, then

A−1B = R + J,

where R is orthogonal, i.e. RRT = I .
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Proof. Since circulant matrices commute,

(A−1B)(A−1B) = A−1B2(A−1)T = A−1(A2 + A)(A−1)T =

(A+ I)(AT )−1 = (AT + J)(AT )−1 = I + J.

2

Since a(y) is an odd weight polynomial, it certainly has an inverse whenever s is a
prime for which 2 is a primitive root, e.g., 11 , and 13 . in these cases and others, the
code generated by the rows of M is equally well generated by the rows of(

1 ϕ j
ϕT I R + J

)
,

and the number of weight patterns depends on the number of inequivalent circulants
R .

Theorem 43 ([15])

(i) If yia(y) is symmetric for some integer i, the code generated by the row of the
matrix M contains a vector of weight 3, eith �rst coordinate 1. The quadratic
residue code from M was obtained contains a vector of weight 1 + 2f .

(ii) Such a(y) form one equivalence class.

Proof. (ii). The equation (
yia(y)

)T
= yia(y)

becomes, after some manipulation and using Corollary 40,

a(y)(y2i + 1) = j(y) + 1.

Since a(y)j(y) = j(y) (a(y) has odd weight), this can be written

a(y)
(
y2i + 1 + j(y)

)
= 1.

Thus both factors are invertible mod ys + 1 , and

a(y)−1 =
(
y2i + 1 + j(y)

)
.

Hence, a(y) is uniquely determined by i . Further, it is prime to s , for if (i, s = u >
1 , the polynomial (yu + 1)/(y + 1) divides both y2i + 1 and j(y) , and (y2i + 1 + j(y))
is not invertible.

Let c(y) be the polynomial with coe�cients

ci =

{
0 1 ≤ i ≤ (s− 1)/2,
1 s+ 1

2
≤ i ≤ s− 1.

If s− 1 = 4w , c0 = 1 ; if s− 1 = 4w− 2 , c0 = 0 . In either case, (w, s) = 1 , and ywc(y)
is symmetric.
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Let yia(y) be symmetric. Since w , i are both prime to s , the transformation
y → yw/i changes it to

ywa(yw/i),

hence,
a(yw/i) = c(y).

Hence, all �symmetric� polynomials belong to the equivalence class of c(y) , and it
is clear that every polynomial in this class has the required property.

(i). If su�ces to look at the case a(y) = c(y) . It is readily checked by Corollary 39
(iii) that

1 w w w w

b(y) = 0
←−−−→
|0 . . . 0|

←−−−→
|1 . . . 1|

←−−−→
|1 . . . 1|

←−−−→
|0 . . . 0|, s− 1 = 4w,

w − 1 w w w − 1

b(y) = 0
←−−−→
|0 . . . 0|

←−−−→
|1 . . . 1|

←−−−→
|1 . . . 1|

←−−−→
|0 . . . 0|, s− 1 = 4w − 2.

Then

a−1(y)b(y) = (1 + y2w)b(y) = j(y) + yw,

a−1(y) (b(y) + j(y)) = yw,

a−1(y) (a(y) + j(y) + 1) = y2w.

Thus the code generated by the rows of M contains a vector of weight 3 , and the
original quadratic residue code contains the vector 1 +Xw +X∗2w . 2

So it is shown that in some cases there exists a vector in 〈Q〉 , or L of weight 1+2f .
In the general case, the connection between the words of minimal weight of the subcode
U and the weight spectrum of L is as follows: if η + Xi1 + · · · + Xir (η = 0 or 1)
is a codeword of minimal weight of U then the code L contains codewords of weight
η+ rf . Hence, minimal nonzero weight of U speci�es the upper bound for the minimal
weight in L .

In the appendix one can �nd a table of the extended QR-codes to be checked (see
Problem 1). The 6 exceptions are marked by bold font. The codes for which we were
able to �nd low-weight vectors (i.e. the weight is less, than the minimal distance for
the corresponding extremal code) are marked by larger italic font.

The described above Karlin-MacWilliams algorithm was implemented in Mathema-
tica. An example is given in the appendix.
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The list of QR-codes to check (n- 1 is a prime)

m �= 24m−1 H�−1Lê2 sHpL � �−1 d wt < d

1 23 111 True 8 −

2 47 231 True 12 −

3 71 5171 True 16 −

7 167 831 True 32 −

8 191 51191 True 36 −

10 239 71171 True 44 −

11 263 1311 True 48 −

13 311 51311 True 56 −

15 359 1791 True 64 −

16 383 1911 True 68 −

18 431 51431 False 76 −

20 479 2391 True 84 −

21 503 2511 True 88 −

25 599 131231 True 104 79

27 647 171191 True 112 103

30 719 3591 True 124 −

31 743 71531 True 128 107

35 839 4191 True 144 −

36 863 4311 True 148 −

37 887 4431 True 152 −

38 911 5171131 False 156 −

41 983 4911 True 168 −

43 1031 511031 True 176 −

46 1103 191291 False 188 −

48 1151 52231 True 196 184

51 1223 131471 True 208 95

55 1319 6591 True 224 −

57 1367 6831 True 232 −

60 1439 7191 True 244 −

62 1487 7431 True 252 −

63 1511 511511 True 256 −

65 1559 191411 True 264 228

66 1583 711131 True 268 −

67 1607 111731 True 272 243

76 1823 9111 True 308 −

77 1847 131711 True 312 300

 Appendix 1  1



78 1871 51111171 True 316 307

85 2039 10191 True 344 −

86 2063 10311 True 348 −

87 2087 711491 True 352 299

88 2111 512111 True 356 −

92 2207 11031 True 372 −

98 2351 52471 False 396 −

100 2399 1111091 True 404 −

101 2423 711731 True 408 347

102 2447 12231 True 412 −

106 2543 311411 True 428 411

108 2591 5171371 True 436 371

111 2663 113 True 448 −

112 2687 171791 False 452 −

113 2711 512711 True 456 −

120 2879 14391 True 484 −

121 2903 14511 True 488 −

122 2927 71111191 True 492 419

125 2999 14991 True 504 −

126 3023 15111 True 508 −

130 3119 15591 True 524 −

132 3167 15831 True 532 −

133 3191 51111291 False 536 −

140 3359 231731 True 564 507

142 3407 1311311 True 572 −

147 3527 411431 True 592 560

151 3623 18111 True 608 −

153 3671 513671 True 616 −

Bold — the 6 exceptions.
LARGER — the cases checked with Karlin–MacWilliams algorithm.
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An example of Karlin-MacWilliams algorith implementation for � = 3527

� = 3527; m =
� + 1

24
; d = 4 m+ 4;

�P1T�P2T &ê@ FactorInteger @� − 1D;

:e = 2 Hs = Min @Select @%, OddQDL, f =
� − 1

e
>

882, 43<

Primitive @�_ ?PrimeQ D : = Do@Block @8li <,

If @Hli = Union @Table @PowerMod@k, ι, �D, 8ι, � − 1<DDL � Range@� − 1D, Return @kDD
D, 8k, PrimePi @�D<D

QuadraticResidues @�_D : = Union @PowerMod@�, 2, �D &ê@ Range@� − 1DD;

QuadraticNonResidues @�_D : = Complement @Range@� − 1D, QuadraticResidues @�DD;

ρ = Primitive @�D;

T = Table @PowerMod@ρ, e j + i, �D, 8i, 0, e − 1<, 8j, 0, f − 1<D;

X = Plus @@@ xT;

Ε = Plus @@ XPRange@1, e, 2 DT;

A = NestList BRotateRight,

Prepend BBoole BMemberQ@QuadraticResidues @�D, �D &ê@

Table BMod@PowerMod@ρ, 2 i f, �D − 1, �D, :i, 1,
e

2
− 1>FF,

ModB
1

2

e

2
+ 1 , 2 FF, s − 1F;

B = NestList BRotateRight,

Prepend BBoole BMemberQ@QuadraticResidues @�D, �D &ê@

Table BMod@−PowerMod@ρ, 2 i f, �D − 1, �D, :i, 1,
e

2
− 1>FF, 0 F,

s − 1F;

� = IdentityMatrix @sD;

� = Array @1 &, 8s, s <D;

UBig = ModBArrayFlatten B
0 1 0

0 A B

1 B + � A + � + �

F, 2 F;

ArrayPlot @U = RowReduce@UBig, Modulus → 2DP ;; s + 1T, Background → LightBlue D

 Appendix 2  1



ArrayPlot @SubU = UP2 ;;, s + 2 ;; T, Background → LightBlue, ImageSize → Tiny D

Reduce@1 + x f < d, Integers DP−1T
� = %P−1T;

x ≤ 13

Timing @vecs = Table @Mod@Plus @@@ Subsets @SubU, 8k<D, 2 D, 8k, 1, 3 <D; D
Timing @ans = Union ê@ Apply @Plus, vecs, 82<DD
80.61, Null<

80.109, 8824<, 814, 18, 22, 26, 30<, 814, 18, 22, 26<<<

Grid BMapIndexed B Item @�1 + �2P1T, Background → LightGreen D �1 <
s

2

Item @s − �1 + �2P1T, Background → LightOrange D True
&, ans, 82<FF

18

16 20 21 17 13

17 21 22 18

StringForm @
" Since we have a `` in the `` than there is a codeword of weight `` < d = ``",

mw= 13, Style @"red area", Background → LightOrange D, 1 + mw f, d D
Since we have a 13 in the red area than there is a codeword of weight 560 < d = 592
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